Risk Factors

Today’s presentations contain forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing available on our website for more information on the risk factors that could cause actual results to differ.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations (http://www.intel.com/performance/resources/limits.htm).
Silicon Future

New Intel technology generation every 2 years
Intel R&D technologies drive this pace well into the next decade

Roadmap

Research
45nm Advantage

Intel® Xeon® 5300 Processor (Clovertown) 65nm

143 mm² 143 mm²

582m Transistors 8 MB Cache

Intel® Xeon® 5400 Processor (Harpertown) 45nm Hi-k

107 mm² 107 mm²

820m Transistors 12 MB Cache

Millions of Quad Core Processors Shipped

*Source: Intel
Note: die picture sizes are approximate
High Performance Computing

Technically motivated computing where performance matters more than cost or ease of use— from desktop to highest end supercomputing:

- Scientific Discovery
- Engineering Innovation
- Finance and Decision Support
- Geo-Economics and Societal Complexities
- Knowledge Discovery
HPC and Mainstream Computing

• Historically most hardware and software architectural innovations have come through High End Computing

• Today, innovation moves up from the bottom (e.g. low-power processing) and down from the top (e.g., parallel computing). But the High-End is still a dominant source of new ideas

• What is in today’s supercomputer will be in tomorrow’s desktop and next week’s embedded platform.
Size does matter

Peta Mac

Exa Mac

Zeta Mac

Yotta Mac
Yesterday, Today and Tomorrow in HPC

Yesterday
- ENIAC
 - 20 Numbers in Main Memory
 - 1946

Today
- CDC 6600 – First successful Supercomputer 9MFlops
 - 1965 - 1977
- ASCI Red
 - (world’s fastest Jan 1997– Nov 2000 on top500 till Nov 2005)
 - First Teraflop Computer,
 - 9298 Intel® Pentium® II Xeon® Processors
 - 1997 - 2006
- Intel ENDEAVOR
 - 464 Intel® Xeon® Processors 5100 series,
 - 6.85 Teraflop MP Linpack, #68 on top500
 - 2006

Tomorrow (~2008 Beyond)
- Petascale Platforms
 - Climate
 - Astrophysics
 - Cell-base Community Simulation

Yesterday’s High-end Supercomputing is Today’s Personal Computing
Just a Few Highly Parallel Apps

- Game physics
- Fluid/Structural simulation
- Portfolio management
- Text mining → Semantic Web
- Signal / image processing primitives
- Derivative pricing suite
- Stochastic optimization suites
- Non-linear Crash models
- Neural Networks for Medicine and AI
Exploding Demand for Data Processing

Example: HPC in Medical Imaging

- 3-D renderings of the images
- Computer aided diagnostic algorithms
- Fusions of images from different modalities
 - MRI, CT, PET, and SPECT
- Real-time applications are appearing

Full Body CT – 256 slice/10,000 images: a 20GB file

Source: Intel Digital Health
Today’s Science Demands Petascale

Example: HPC in Climate Computing

- Some believe that global warming will produce more extremes weather (drought/flooding).
- Current models are too coarse and inaccurate to be reliable globally much less for predicting climate change at the national level.

To predict regional climate change:

- Community climate model resolution goal is 10 km
- Simulate ~150 days/day on today’s fastest computer at 10 km using NCAR/Sandia SEAM
- Typical climate simulation is for 100 yrs.

To Simulate 100 Year Climate:

1.6 sustained PFLOPS = about a month of Computing; 50 PFLOPS = a day
Modeling the Brain

- Human Brain
- Bird Brain
- Worm Brain
- A Neuron

FLOPS
- zetta 10^{21}
- exa 10^{18}
- peta 10^{15}
- tera 10^{12}
- giga 10^9
- mega 10^6

Timeline:
- 1990
- 2000
- 2010
- 2020
- 2030
- 2040
The Top500: Reaching Petascale

PF on all Top500 reached ‘04

PF on a single system at ~2008 Sustained PF ~2011...

It takes merely 8 years to move from #1 to being off the list!

1TF barrier to entry Surpassed in 2005...

Intel Columbia
NEC
IBM BG-L

Source: top500.org
Driving to Petascale & Exascale

Disruption – Intel many core

Source: Dr. Steve Chen, “The Growing HPC Momentum in China”, June 30th, 2006, Dresden, Germany
Driving to Petascale & Exascale For Science and engineering

Real world challenges:
- Full modeling of a aircraft in all conditions
- Green airplanes
- Genetically tailored medicine
- Understand the origin of the universe
- Synthetic fuels everywhere
- Accurate extreme weather prediction
- Understanding Human Intelligence

Source: Dr. Steve Chen, "The Growing HPC Momentum in China", June 30th, 2006, Dresden, Germany
Challenges to Success at the Petascale

- Programmability and Scalability
- Processor Speed
- Memory Performance
- Network Performance
- Power
- Reliability
- Manageability
- Purchase and Ownership Cost
Processor Performance

Sustaining Petascale with ~6000 Processors in 2010

Source: Intel
Performance within the Power Envelope

\[P \sim \frac{1}{2} \omega C V_{\text{min}}^2 \]

\[V_{\text{min}} \sim V_0 \omega \quad \rightarrow \quad P \sim \frac{1}{2} C V_0^2 \omega^3 \]

As we shrink features, new challenges arise:
- Error management
- Leakage power
- Moore’s Law continues,
- But Frequency increase is becoming more challenging
Performance within the Power Envelope

\[P \sim \frac{1}{2} \omega C V_{\text{min}}^2 \]

\[V_{\text{min}} \sim V_0 \omega \quad \rightarrow \quad P \sim \frac{1}{2} C V_0^2 \omega^3 \]

Voltage = 1
Freq = 1
Power = 1
Perf = 1

Voltage = -20%
Freq = -20%
Power = 1
Perf = ~1.7
A Sample Many Core System

65nm, 4 Cores
1V, 3GHz
10mm die, 5mm each core
Core Logic: 6MT, Cache: 44MT
Total transistors: 200M

45nm
4 Cores, 1V, 3GHz
3.5mm each core
Total: 400MT

32nm
16 Cores, 1V, 3GHz
2.5mm each core
Total: 800MT

22nm
32 Cores, 1V, 3GHz
1.8mm each core
Total: 1.6BT

16nm
64 Cores, 1V, 3GHz
1.3mm each core
Total: 3.2BT

Research Challenge:
Asymmetric vs. symmetric, Homogenous vs. heterogeneous
What kind of applications will benefit?

Note: the above pictures don’t represent any current or future Intel products
Teraflops Research Chip
100 Million Transistors • 80 Tiles • 275mm²

First tera-scale programmable silicon:
- Teraflops performance
- Tile design approach
- On-die mesh network
- Novel clocking
- Power-aware capability
- Supports 3D-memory

Not designed for IA or product
Tera-scale Introduction

• Represents significant Intel transition from “large” cores to 32+ low-power, highly-threaded IA cores per die

• Motivations for a new architecture
 – Enable emerging workloads and new use-models
 – Low Power IA cores provide 4-5X greater performance-power efficiency
 – Scaling beyond the limits of Instruction level parallelism and single-core power

• Tera-scale is NOT simply SMP-on-die
 – Will require complete platform and software enabling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SMP</th>
<th>Tera-scale</th>
<th>Improvement</th>
<th>Optimizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>12 GB/s</td>
<td>~1.2 TB/s</td>
<td>~100X</td>
<td>Massive bandwidth between cores</td>
</tr>
<tr>
<td>Latency</td>
<td>400 cycles</td>
<td>20 cycles</td>
<td>~20X</td>
<td>Ultra-fast synchronization</td>
</tr>
</tbody>
</table>
Tiled Design & Mesh Network

Repeated Tile Method:
- Compute + router
- Modular, scalable
- Small design teams
- Short design cycle

Mesh Interconnect:
- “Network-on-a-Chip”
 - Cores networked in a grid allows for super high communications in and between cores
- 5-port, 80GB/s* routers
- Low latency (1.25ns*)
- Future: connect IA/or and special purpose cores

* When operating at a nominal speed of 4GHz
Fine Grain Power Management

- Novel, modular clocking scheme saves power over global clock
- New instructions to make any core sleep or wake as apps demand
- Chip Voltage & freq. control (0.7-1.3V, 0-5.8GHz)

Industry leading energy-efficiency of 16 Gigaflops/Watt

Dynamic sleep

STANDBY:
- Memory retains data
- 50% less power/tile

FULL SLEEP:
- Memories fully off
- 80% less power/tile

21 sleep regions per tile (not all shown)

- Data Memory
 - Sleeping: 57% less power
- Instruction Memory
 - Sleeping: 56% less power
- Router
 - Sleeping: 10% less power (stays on to pass traffic)
- FP Engine 1
 - Sleeping: 90% less power
- FP Engine 2
 - Sleeping: 90% less power
Research Data Summary

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Voltage</th>
<th>Power</th>
<th>Bisection Bandwidth</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.16 GHz</td>
<td>0.95 V</td>
<td>62W</td>
<td>1.62 Terabits/s</td>
<td>1.01 Teraflops</td>
</tr>
<tr>
<td>5.1 GHz</td>
<td>1.2 V</td>
<td>175W</td>
<td>2.61 Terabits/s</td>
<td>1.63 Teraflops</td>
</tr>
<tr>
<td>5.7 GHz</td>
<td>1.35 V</td>
<td>265W</td>
<td>2.92 Terabits/s</td>
<td>1.81 Teraflops</td>
</tr>
</tbody>
</table>

- **1.01 Teraflops**
- **62 Watts**

Image: Top right corner
More than the Cores

- New instructions
- Cache improvements
- HW thread scheduling
- Baseline

Performance increase

Number of cores

Value of Tera-scale Research

Just Adding Cores
Intra-chip Interconnect Bus for Future Many Core Chip?

Issues:
- Slow
- Shared, limited scalability?

Benefits:
- Power?
- Simpler cache coherency

Traditional Bus is Not a Good Interconnect Option
Intra-chip Interconnect Options to Evaluate Bandwidth, Link Bandwidth and Power

Topology Effect on Bandwidth

- Normalized B/W
- Number of nodes
- xbar
- mesh
- ring

Energy Iso-Bandwidth

- Energy per bit (J)
- Number of cores
- xbar
- ring
- Clustered ring
- mesh

Interconnect Area Iso-Bandwidth

- Relation to Compute Area
- Number of cores
- xbar
- mesh
- ring
- Clustered ring
How Do We Feed the Machine?

Memory Bandwidth and Processor Performance Need to Keep Pace

RMS Workload - Bandwidth and Computation Requirements

<table>
<thead>
<tr>
<th></th>
<th>Bandwidth (GB/s)</th>
<th>Computation (GFlops/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda 1MP</td>
<td>187</td>
<td>250</td>
</tr>
<tr>
<td>Soda 4MP</td>
<td>749</td>
<td>143</td>
</tr>
<tr>
<td>Beetle 1MP</td>
<td>6809</td>
<td>60</td>
</tr>
<tr>
<td>FB, Est in Video Surv</td>
<td>13</td>
<td>770</td>
</tr>
<tr>
<td>FB, Est in Body Tracking</td>
<td>8</td>
<td>4380</td>
</tr>
<tr>
<td>CFD (MRI)</td>
<td>1642</td>
<td>13140</td>
</tr>
<tr>
<td>CFD (MRI)</td>
<td>2215</td>
<td>8907</td>
</tr>
</tbody>
</table>

Source: Intel Labs

Memory Bandwidth and Processor Performance Need to Keep Pace
What If?
Moore’s Law Could be Applied to the Airline Industry?
What If?
Moore’s Law Could be Applied to the Airline Industry?
Memory Performance for Balanced Computing

X86 Bytes Per FLOP

Source: Intel

Byte : Flop Ratio has been Consistent
When we have tera-ops processors
We’ll need TB/s Memory systems

• To do the most common arithmetic operation
 \[X \leq AX + B \]
• Requires that 16 bytes be read into the functional unit
• And that 8 bytes be written
• In addition, an 8 Bytes instruction must be processed
When we have tera-ops processors
We’ll need TB/s Memory systems

This neglects multi-core and coherency issues
Issues with today’s memory system options

• A big processor socket has O(2K) pins
• DDR achieves relatively good BW and relatively low power at amazingly low cost
 - Slow links, lots of them
 ▪ There are simply not enough pins to achieve traditional B/F ratios
• FB-DIMM technology: higher BW, many fewer pins
 But: much higher power (~2X)
 Longer latencies
 Cost(?)
Memory system solutions for Terascale processors

- Buffer on Board
- DRAM on package
- Stacked DRAM
- Silicon Photonics
Memory Bandwidth options

Augment on-pkg MC with very fast links to
An on-board MC
Memory Bandwidth options: DRAM on Pkg

[Diagram showing CPU and DRAM layers in a package, with text: "DRAM, CPU integrated on die"]
Memory Bandwidth futures: 3D Die Stacking

- Power and IO signals go through DRAM to CPU
- Thin DRAM die
- Through DRAM vias

DRAM, Voltage Regulators, and High Voltage I/O All on the 3D integrated die
Silicon Photonics Future I/O Vision

HPC and Data Center Fabrics

Chip-to-Chip Interconnects

Backplane and Display Interconnects

Chemical Analysis

Medical Lasers

Research Challenge: Intra-chip and Inter-chip I/O Architecture and Topology Options
Nehalem Based System Architecture

2, 4, 8 Cores
4, 8, 16 Threads
Intel® QuickPath Architecture
Integrated Memory Controller
Buffered or Un-buffered Memory
*Optional Integrated Graphics
Interconnect

• The bigger the system, the more critical the interconnect:

• Blue Gene* has nearly 3X the peak speed of XT-3/Red Storm*;

• RS outperforms BG on most apps

 WHY?

 ✓ It’s about the interconnect...
Interconnect

• For large systems, meshes/tori with fat links are best
• Rule of thumb:
 - I/O speed (B/S) ~ processor speed (Flops)
• Terascale Processor:
 - Rule of thumb cannot hold currently
 ▪ signaling at more than 10 Gbits/s/wire pair = Grand Challenge
 ▪ Pin counts, Power & Space budgets are limited
 ▪ Optics speeds are also limited: by cost, power, and electrical input
Well-designed MPI codes scale on well-designed interconnects

Example: Scalable Neutronics (Los Alamos)

MPI-based code run time only stays constant on a well balanced system

- ASCI Red
- Blue Mtn
- Blue Pac TR

Number of PEs
PCIe 2.0

2X PCIe1.0 Bandwidth

Broad IHV Support

Intel® Xeon® 5400 Chipset and X38 Express Chipset In 2H'07

Nine Cards from Seven Vendors Working with Intel’s Stoakley Platform at 5GHz
PCIe 2.0

- 2X PCIe 2.0 Bandwidth
- Data Reuse
- Dynamic Power Management
- Atomic Operations
- Broad IHV Support

Intel® Xeon® 5400 Chipset and X38 Express Chipset In 2H'07

PCIe 3.0

- 2X PCIe 2.0 Bandwidth
- Data Reuse
- Dynamic Power Management
- Atomic Operations
- Broad IHV Support
- Industry Standard Attach For Accelerators
- Specifications In 2009
- Products Expected In 2010

Expanding Momentum and Innovation
Programmability

- Nearly all HPC apps today are written for X86 architecture
- Nearly all use MPI for remote memory access
- OpenMP is successful on SMP nodes
- Most people are anxious to avoid hybrid programming
- So, what do we do about 1—100 Million MPI threads?
Programmability– biased opinion

- X86 is a huge advantage
- MPI is not going away
- Many new apps would be written using GAS models
 - If the support were there
- Multi-threading/dataflow languages are interesting but have a huge barrier to adoption
- The problem is less programming complexity than achieving performance (jitter, load balance, reliability...)
- Transactional memory will aid in on-socket shared memory parallel programming
- Fractal computing models will become important
Shared Memory Scalability on Many Core systems

![Graph showing speedup vs. number of cores for various applications.](source: Intel Labs)
Power

• Speed costs power
• Memory bandwidth costs power
• Memory size costs power
• Power delivery costs power
• Cooling costs power
• Optics costs power
• Electrical signaling costs even more power
• Power envelope and density drives cooling issues
• Green policies
• There is no single magic bullet
System Power/Cooling Efficiency

Silicon:
- Moore’s law, Strained silicon
- Transistor leakage control techniques
- Clock gating, use more Si to replace faster Si

Processor:
- Policy-based power allocation
- Multi-threaded cores

System Power Delivery:
- Fine grain power management
- Ultra fine grain power management
- High efficiency power converters

Facilities:
- Air cooling and liquid cooling options
- Vertical integration of cooling solutions

Research Challenge:
“Zero-overhead” HW & SW solutions
For system and facility level power management
Reliability:
Reliable Answers From Unreliable Components

• Petascale-to-Exascale systems are huge
• With current technology, ~ 3—5X increase in part count over today’s biggest systems
• 3—4X the number of SW instances
• Exquisite efforts needed to keep parts cool
• Engineered-in reliability is not an option; it is an imperative
• SW complexity and brittleness will remain the largest cause of unreliability in HPC
• 20 Hour MTBI is a realizable goal for multi peta-ops systems
Reliable Systems with Unreliable Components

Architectural Techniques
- Micro Solutions
 - Parity
 - SECDED ECC
 - π bit
- Macro Solutions
 - Lockstepping
 - Redundant multithreading (RMT)
 - Redundant multi-core CPU

Circuit Techniques
- Device Param Tuning
- Rad-hard Cell Creation

Process Techniques
- State-of-Art Processes

Detect, Correct, Log and Signal the errors

Research Challenge:
From software (Apps, OS, VMM, etc.) to hardware
a reliable Petascale HPC system needs management top down
Summing it up:
Intel will pave the road to Exascale

- Intel processors will provide a step-function advantage in
 - Programmability
 - Performance and reliability
 - Cost of performance
- Intel will bring its world-leading technologies to bear
 - Si process
 - Many-core
 - Memory technologies
 - Optics
 - Power reduction and mgmt
 - Productivity through SW
- Intel will architect fastest-in-the-world systems

SRW (not Intel) Prediction:
Red River Shootout 2007
Sooners: 23 Longhorns 10